Eulerian Geometric Discretizations of Manifolds and Dynamics

نویسندگان

  • Patrick Mullen
  • Jerrold E. Marsden
  • Pooran Memari
  • Evan Gawlik
چکیده

This thesis explores new methods for geometric, structure-preserving Eulerian discretizations of dynamics, including Lie advection and incompressible fluids, and the manifolds in which these dynamics occur. The result is a novel method for discrete Lie advection of differential forms, a new family of structure-preserving fluid integrators, and a new set of energies for optimizing meshes appropriate for some discrete geometric operators. First, high-resolution finite volume methods are leveraged to introduce a new method for discretizing the Lie advection of discrete differential forms, along with the related contraction operator, on regular grids. Through its geometric approach, the method exactly preserves properties such as the closedness of Lie advected closed forms. This results in an extension of finite volume techniques applicable to forms of arbitrary degree. After this, attention is turned to simplicial meshes, where new meshing techniques are developed to give formal error bounds on the discrete diagonal Hodge star, an important operator for geometric computations. Utilizing weighted Delaunay triangulations, both the primal mesh and its dual are optimized simultaneously over the entire space of orthogonal primal/dual pairs. Improved accuracy of the solution of Poisson equations is demonstrated as a practical application, as well as an increase in percentage of wellcentered elements. Finally, a new structure-preserving method for the incompressible Navier-Stokes equations on simplicial meshes is developed, offering in the inviscid case the exact conservation of either the discrete energy or symplectic form. This leads to capturing the correct energy decay when viscosity is added, resulting in dissipation independent of grid and time resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes

An approach for constructing high-order Discontinuous Galerkin schemes which preserve discrete conservation in the presence of arbitrary mesh motion, and thus obey the GCL, is derived. The approach is formulated for the most general case where only the coordinates defining the mesh elements are known at discrete locations in time, and results in the prescription of higher-order quadrature rules...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Geometric gradient-flow dynamics with singular solutions

The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcy’s Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We iden...

متن کامل

Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows

Parcel Eulerian–Lagrangian Hamiltonian formulations have recently been used in structure-preserving numerical schemes, asymptotic calculations, and in alternative explanations of fluid parcel (in)stabilities. A parcel formulation describes the dynamics of one fluid parcel with a Lagrangian kinetic energy but an Eulerian potential evaluated at the parcel’s position. In this paper, we derive the ...

متن کامل

Dynamics of Automorphisms of Compact Complex Manifolds

We give an algebro-geometric approach towards the dynamics of automorphisms/endomorphisms of projective varieties or compact Kähler manifolds, try to determine the building blocks of automorphisms /endomorphisms, and show the relation between the dynamics of automorphisms/endomorphisms and the geometry of the underlying manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011